既然剛性較弱會導致動態和解析力的缺失,那么利用高剛性的金屬材質來制作振膜,應該會得到很好的效果才對。若不談號角喇叭用的壓縮驅動器,一般能看到用于直接放射的中音或低音單元所用的金屬材質,應屬鋁金屬或其合金產物為最多,最大的優勢便是剛性很強,在一定范圍的工作條件下不會變形,其結果便是很低的失真和很好的細節解析力。但是剛性強的另一面便是內損低,就像我上次提過的“一指蔣”高音一樣,能量不會被振膜材質本身吸收,所以發生盆分裂時會有很明顯的共振峰出現在頻率響應的高端,若不妥善處理,就很容易出現“金屬聲”。
所謂妥善處理,首先可以在分音器的設計上盡可能將此共振峰壓制,也就是把共振峰安排在濾波的截止帶或以外,讓進入單元的訊號不要含有會激起高頻共振的頻率,于是共振峰便會被分音器所“隱藏”起來,我們就不會聽到金屬聲了。為達此目的,通常必須要采用至少二階以上的分頻斜率,才能有效濾除;若用一階,斜率太緩,不足以有效壓制。若再把分頻點往低端移動,又會犧牲掉可用的頻寬,這樣的作法不太健康。因此,高階分頻和慎選分頻點是采用金屬振膜單元所必須特別注意的。
或者,相對于消極的避讓,也可積極的改進缺點,那就是加強振膜的阻尼:三明治夾層結構、涂布阻尼物都是不錯的方式。市面上這類的產品已經愈來愈多,其中也不乏相當成功的例子,如上一期“徹底研究”介紹的elac,或是聲音和價錢都很高貴的瑞士ensemble。
除了高頻共振不好對付之外,振膜重量是另一項不利因素。因為成本的關系,還沒見過用鈦金屬制作的中音單元。所以,金屬盆的中音或低音單元雖可在強勁驅動下表現出色的動態,但整體的發聲效率事實上還是偏低,一般需要較大的功率來伺候。